Alunos Online - Trabalhos Escolares e Educação




Esqueci minha senha

Soma e produto das raízes de uma equação do 2º grau

Sem que seja necessário resolver uma equação do 2° grau, é possível encontrarmos o resultado da soma e produto das raízes da equação.

Aprenda a utilizar as relações de soma e produto entre raízes de uma equação do 2° grau

No estudo de álgebra, lidamos muito com equações, tanto do 1° quanto do 2° grau. Em geral, uma equação do 2° grau pode ser escrita da seguinte forma:

ax2 + bx + c = 0

Os coeficientes da equação do 2° grau são a, b e c. Essa equação recebe esse nome porque a incógnita x está elevada à segunda potência ou ao quadrado. Para resolvê-la, o método mais comum é a utilização da Fórmula de Bhaskara. Esta garante que o resultado de qualquer equação do 2° grau pode ser obtido através da fórmula:

x = – b ± √ , onde ∆ = b2 – 4.a.c
2.a                       

Através dessa fórmula, obtemos duas raízes, uma delas é obtida utilizando o sinal positivo antes da raiz quadrada de delta e outra utilizando o sinal negativo. Podemos então representar as raízes da equação do 2° grau como x1 e x2 da seguinte forma:

x1 = – b +
        2.a

x2 = – b –
        
2.a

Vamos tentar estabelecer relações entre a soma e produto dessas raízes. A primeira delas pode ser obtida pela soma. Teremos, então:

x1 + x2 = – b + + (– b – ∆)
                         2.a            2.a          

x1 + x2 = – b + ∆ – b –
             2.a

Como as raízes quadradas de delta possuem sinais opostos, elas anular-se-ão, restando apenas:

x1 + x2 = – 2.b
              2.a

Simplificando a fração resultante por dois:

x1 + x2 = – b
              a

Portanto, para qualquer equação do 2° grau, se somarmos suas raízes, obteremos a razão b/a. Vejamos uma segunda relação que pode ser obtida pela multiplicação das raízes x1 e x2:

x1 . x2 = – b + . – b –
              2.a          2.a

x1 . x2 = (– b + ∆).(– b – ∆)
             4.a2

Aplicando a propriedade distributiva para fazer a multiplicação entre os parênteses, obtemos:

x1 . x2 = b2 + b.∆ – b.∆ -- (∆)2
                   
4.a2

Como os termos b. possuem sinais opostos, eles anulam-se. Também calculando (∆)2 , temos que (∆)2 = ∆.∆ = ∆. Lembrando ainda que ∆ = b2 – 4.a.c. Portanto:

x1 . x2 = b2 – ∆
             
4.a2

x1 . x2 = b2 – (b2 – 4.a.c)
                4.a2

x1 . x2 = b2 – b2 + 4.a.c
               4.a2

x1 . x2 = 4.a.c
             4.a2

Considerando que a2 = a.a, podemos simplificar a fração, dividindo o numerador e o denominador por 4.a, obtendo:

x1 . x2 =   c  
             a

Essa é a segunda relação que podemos estabelecer entre as raízes de uma equação do 2° grau. Ao multiplicar as raízes, encontramos a razão c/a. Essas relações de soma e produto das raízes podem ser empregadas mesmo que estejamos trabalhando com uma equação do 2° grau incompleta.

Agora que conhecemos as relações que podem ser obtidas através da soma e produto das raízes de uma equação do 2° grau, vamos resolver dois exemplos:

  1. Sem resolver a equação x2 + 5x + 6 = 0, determine:

    a) A soma de suas raízes:

x1 + x2 = – b
               a

x1 + x2 = – 5
               1

x1 + x2 = – 5

b) O produto de suas raízes:

x1 . x2 =   c  
             a

x1 . x2 =    6   
            1

x1 . x2 = 6

  1. Determine o valos de k para que a equação tenha duas raízes x2 + (k – 1).x – 2 = 0, cuja soma seja igual a – 1.

    A soma de suas raízes é dada pela seguinte razão:

x1 + x2 = – b
              a

x1 + x2 = – (k – 1)
               1

Mas nós temos definido que a soma das raízes é – 1

1 = – (k – 1)
       
1

k + 1 = – 1
k = – 1 – 1
(--1). – k = – 2 .(--1)
k = 2

Portanto, para que a soma das raízes dessa equação seja – 1, o valor de k deve ser 2.


Por Amanda Gonçalves Ribeiro
    Deixe seu comentário para "Soma e produto das raízes de uma equação do 2º grau"


    DESTAQUES
    Confira os destaques abaixo

    ..................................................

    Educação Artística
    Conheça os principais aspectos da arte pontilhista.

    ..................................................

    Redação
    Aprenda como redigir uma carta comercial.

    ..................................................