Alunos Online - Trabalhos Escolares e Educação




Esqueci minha senha

Interpolação de meios aritméticos

Progressão aritmética

As progressões apresentam aplicações nas mais diversas áreas do conhecimento, sendo fundamentais para compreensão de vários fenômenos da natureza e também sociais. A progressão aritmética é uma sequência numérica em que cada termo, a partir do segundo, é obtido somando o termo anterior a uma constante r, denominada de razão.

Interpolar significa “colocar entre”. Interpolar meios aritméticos entre dois números dados é acrescentar números entre estes que são conhecidos, de forma que a sequência numérica formada seja uma P.A. Para realizar a interpolação aritmética é necessário o uso da fórmula do termo geral da P.A.

an = a1 + (n-1)∙r

Onde,

r → é a razão da P.A.
a1 → é o primeiro termo da P.A.
n → é o número de termos da P.A.
an → é o último termo da P.A.

Vejamos alguns exemplos sobre interpolação aritmética.

Exemplo 1. Interpole 7 meios aritméticos entre 6 e 46.

Solução: Interpolar 7 meios aritméticos entre 6 e 46 é acrescentar 7 números entre 6 e 46 para que a sequência formada seja uma P.A.

(6, _, _, _, _, _, _, _, 46)

Note que teremos uma P.A. com 9 termos em que o primeiro termo é 6 e o último é 46. Assim, segue que:

a1 = 6
n = 9
a9 = 46

Para determinarmos os termos que deverão ficar entre 6 e 46 é necessário determinar a razão da P.A. Para isso, utilizaremos a fórmula do termo geral.

Encontrado o valor da razão, fica fácil determinar os demais elementos da sequência.

a2 = a1 + r = 6 + 5 = 11
a3 = a2 + r = 11 + 5 = 16
a4 = a3 + r = 16 + 5 = 21
a5 = a4 + r = 21 + 5 = 26
a6 = a5 + r = 26 + 5 = 31
a7 = a6 + r = 31 + 5 = 36
a8 = a7 + r = 36 + 5 = 41

Dessa forma, está completa a interpolação dos 7 meios aritméticos entre 6 e 46, formando a seguinte P.A:

(6, 11, 16, 21, 26, 31, 36, 41, 46)

Exemplo 2. Numa progressão aritmética, a1 = 120 e a11 = 10. Determine os meios aritméticos existentes entre a1 e a11.

Solução: Devemos obter os números existentes entre 120 e 10 para que a sequência obtida seja uma P.A.

(120, _, _, _, _, _, _, _, _, _, 10)

Precisamos conhecer a razão dessa P.A.

Temos:

a1 = 120
a11 = 10
n = 11

Segue que:

Conhecido o valor da razão, basta determinar os demais termos da sequência:

a2 = a1 + r = 120 + (– 11) = 120 – 11 = 109
a3 = a2 + r = 109 + (– 11) = 109 – 11 = 98
a4 = a3 + r = 98 – 11 = 87
a5 = a4 + r = 87 – 11 = 76
a6 = a5 + r = 76 – 11 = 65
a7 = a6 + r = 65 – 11 = 54
a8 = a7 + r = 54 – 11 = 43
a9 = a8 + r = 43 – 11 = 32
a10 = a9 + r = 32 – 11 = 21

Portanto, obtemos a P.A:

(120, 109, 98, 87, 76, 65, 54, 43, 32, 21, 10)


Por Marcelo Rigonatto
    Deixe seu comentário para "Interpolação de meios aritméticos"


    DESTAQUES
    Confira os destaques abaixo

    ..................................................

    Educação Artística
    Conheça os principais aspectos da arte pontilhista.

    ..................................................

    Redação
    Aprenda como redigir uma carta comercial.

    ..................................................