Alunos Online - Trabalhos Escolares e Educação




Esqueci minha senha

Função do 1º Grau

A função do 1º grau é expressa da seguinte forma: y = ax + b ou f(x) = ax + b, onde a e b são números reais e a também é diferente de 0.

Gráfico da função afim

Toda expressão na forma y = ax + b ou f(x) = ax + b, onde a e b são números reais e a ≠ 0, é considerada uma função do 1º grau. Exemplos:

y = 2x + 9, a = 2 e b = 9

y = –x – 1, a = – 1 e b = – 1

y = 9x – 5, a = 9 e b = – 5

y = (1/3)x + 7, a = 1/3 e b = 7


Uma função do 1º grau possui representação no plano cartesiano através de uma reta, podendo a função ser crescente ou decrescente, o que determinará a posição da reta.

Função crescente (a > 0)



Função decrescente (a < 0)


Função constante


Para determinarmos o zero ou a raiz de uma função basta considerarmos f(x) = 0 ou y = 0.
Raiz ou zero da função é o instante em que a reta corta o eixo x.
f(x) = ax + b
f(x) = 0
ax + b = 0
ax = – b
x = – (b/a)

Exemplo 1
Obtendo a raiz da função f(x) = 3x – 6
3x – 6 = 0
3x = 6
x = 6/3
x = 2
A raiz da função é igual a 2.

Exemplo 2
Seja f uma função real definida pela lei de formação f(x) = 2x + 1. Qual é a raiz dessa função?

F(x) = 0
2x + 1 = 0
2x = –1
x = – 1/2


Por Marcos Noé
    Deixe seu comentário para "Função do 1º Grau"


    DESTAQUES
    Confira os destaques abaixo

    ..................................................

    Geopolítica
    Entenda os conflitos pela água ao redor do mundo.

    ..................................................

    Geologia
    Leia informações sobre os agentes externos do relevo.

    ..................................................