Alunos Online - Trabalhos Escolares e Educação




Esqueci minha senha

Coordenadas do vértice da parábola

Vértices

Toda função quadrática ou do 2º grau é do tipo f(x) = ax2 + bx + c, com a ≠ 0. O gráfico de uma função do segundo grau é uma parábola que, dependendo do valor do coeficiente a, terá a concavidade voltada para cima ou para baixo. Se o coeficiente a for negativo, a concavidade da parábola será voltada para baixo. Se ocorrer o contrário, ou seja, a for positivo, a parábola terá a concavidade voltada para cima. A parábola apresenta alguns pontos notáveis: as raízes, que são os pontos onde o gráfico intercepta o eixo das abscissas, e o vértice, que pode ser o ponto de máximo absoluto ou de mínimo absoluto da função. Faremos o estudo do vértice da parábola, a fim de determinar as suas coordenadas e compreender sua importância no estudo da função do 2º grau.

Como foi dito anteriormente, o vértice da parábola pode ser o ponto de máximo absoluto ou de mínimo absoluto da função do 2º grau. Se a concavidade da parábola for voltada para cima, o vértice é o ponto de mínimo da função, ou seja, é o menor valor que a função pode assumir. Se a concavidade da parábola estiver voltada para baixo, o vértice é o ponto de máximo da função, ou seja, o maior valor que a função pode assumir. O uso desses conceitos é bastante útil na teoria de lançamentos oblíquos.

                             

 

 Dada uma função do 2º grau f(x) = ax2 + bx + c, as coordenadas do vértice V da parábola descrita por essa função são:

 Onde
∆ = b2 - 4ac

Vejamos alguns exemplos de aplicação.

Exemplo 1. Verifique se as seguintes funções apresentam ponto de máximo ou mínimo absoluto.

a) f(x) = – 2x2 + 3x + 5

Solução: No caso da função do 2º grau, para determinarmos se há ponto de máximo e mínimo absoluto basta verificar se a concavidade da parábola descrita pela função apresenta concavidade voltada para baixo ou para cima. Nesse caso, temos que:

a = – 2 < 0 → concavidade da parábola está voltada para baixo.

Como a concavidade da parábola está voltada para baixo, a função apresenta ponto de máximo absoluto, que é o vértice da parábola.

b) y = 5x2 – 3x

Solução: Temos que

a = 5 > 0 → concavidade da parábola está voltada para cima.

Assim, podemos afirmar que a função apresenta ponto de mínimo absoluto, que é o vértice da parábola.

Exemplo 2. Determine as coordenadas do vértice da parábola descrita pela função f(x) = 2x2 – 4x + 6.

Solução: Analisando a função f(x) = 2x2 – 4x + 6, obtemos:

a = 2, b = – 4 e c = 6

Segue que:

Exemplo 3. Uma bala é atirada de um canhão e descreve uma parábola de equação y = -9x2 + 90x. Determine a altura máxima atingida pela bala do canhão, sabendo que y é a altura em metros e x é o alcance, também em metros.

Solução: Como a parábola possui equação y = – 9x2 + 90x, podemos constatar que sua concavidade está voltada para baixo e que a altura máxima atingida pela bala de canhão corresponde à coordenada y do vértice, uma vez que o vértice é ponto de máximo absoluto.

Assim, para determinar a altura máxima atingida pela bala do canhão, basta determinar o valor y do vértice.
Temos que: a = – 9, b = 90 e c = 0. Logo, teremos:

Portanto, a altura máxima atingida pela bala de canhão é de 225 metros.


Por Marcelo Rigonatto
    Deixe seu comentário para "Coordenadas do vértice da parábola"


    DESTAQUES
    Confira os destaques abaixo

    ..................................................

    Química
    Veja algumas das doenças ocasionadas por alguns metais pesados.

    ..................................................

    Física
    Você sabe como ocorre a reflexão e refração da luz? Confira aqui!

    ..................................................