Alunos Online - Trabalhos Escolares e Educação




Esqueci minha senha

Condição de alinhamento de três pontos

Pontos alinhados

Considere três pontos distintos do plano cartesiano A(xa, ya), B(xb, yb) e C(xc, yc). Esses pontos estão alinhados se o determinante de suas coordenadas for igual a zero. Ou seja:

Exemplo 1. Verifique se os pontos A(5, 5), B(1, 3) e C(0, 5) estão alinhados.
Solução: devemos fazer o cálculo do determinante das coordenadas dos pontos A, B e C e verificar se o resultado é igual a zero.

Como o determinante das coordenadas dos pontos resultou em um valor diferente de zero, podemos concluir que os pontos A, B e C não estão alinhados.

Exemplo 2. Determine o valor de c para que os pontos A(4, 2), B(2, 3) e C(0, c) estejam alinhados.
Solução: para que os pontos A, B e C estejam alinhados, o determinante de suas coordenadas deve ser igual a zero. Assim, temos que:


Fazendo o cálculo do determinante obtemos:
12 + 0 + 2c – 4 – 4c – 0 = 0
ou
8 – 2c = 0
2c = 8
c = 4.

Exemplo 3. Para quais valores reais de k os pontos (6, k), (3, 4) e (2 – k, 2) são colineares?
Solução: dizer que os pontos são colineares é o mesmo que dizer que eles estão alinhados. Dessa forma, devemos fazer o cálculo do determinante e igualá-lo a zero.


Desenvolvendo o determinante, obtemos:
– k2 + 3k + 10 = 0
ou
k2 – 3k – 10 = 0
Resolvendo a equação acima, obtemos:
k = 5 ou k = – 2


Por Marcelo Rigonatto
    Deixe seu comentário para "Condição de alinhamento de três pontos"


    DESTAQUES
    Confira os destaques abaixo

    ..................................................

    Educação Artística
    Conheça os principais aspectos da arte pontilhista.

    ..................................................

    Redação
    Aprenda como redigir uma carta comercial.

    ..................................................